LIMITING EXPANSION RATIO OF A SUPERSONIC
JET FLOWING ONTO A PERPENDICULAR
INFINITE PLANE BARRIER

E. I. Sokolov, A. V, Startsev, UDC 532.525.2: 536.6,011.72
V. N. Uskov, and V., T, Shevchuk

The effect of the expansion rate n on the withdrawal A of the shock and the relative pressure at
the stagnation point is studied for a jet flowing onto an infinite plane barrier placed perpendicular
to the jet axis.

It is known [1-3 and others] that one of the principal parameters affecting the nature of the interaction of
a supersonic jet with a barrier is the expansion ratio n of the jet, equal to the ratio of the static pressures at
the exit cross section of the nozzle P, and in the surrounding space P;;. When n < « a suspended compression
shock 1 (Fig. 1) and a nonisentropic compressed layer between this shock and the jet boundary are formed in
the jet. The intersection of the suspended shock with the central shock 2, which develops in the jet ahead of
the barrier, introduces into the flow behind it disturbances which propagate through the subsonic part of the
shock layer in the direction of the jet axis. These disturbances lead to a change in the shape of the central
shock and in the parameters behind it in comparison with n = «,

For a fixed distance h from the nozzle to the barrier the intersection of the shocks 1 and 2 takes place
ever closer to the axis with a decrease in the expansion ratio of the jet, and at some value nx the disturbances
introduced by the compressed layer reach the jet axis. A further decrease in the expansion ratio leads to a
difference in the amount of axial withdrawal of the central shock and consequently in all the parameters of
flow in front of the barrier from their values for n = <, This expansion ratio nx is called the limiting value.

Since the flow in the shock layer is determined by the parameters My, k, and h, the quantity n, also
depends on these parameters.

Fig. 1. Diagram of interaction of jet with barrier:

1, 2, 3) suspended, central, and reflected com-
pression shocks; 4) jet boundary; 5) nozzle; 6) bar-
rier; solid, dashed, and dashed-dot lines correspond
to jets with expansion ratios n <ny, n> n%, and n = o,
respectively.
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Fig. 2. Withdrawal A of central compression shock and pres-
sure P at stagnation point as functions of expansion ratio of
jet: @) Ma = 2, k=1.4; 1) h=3; 2) 4; b) M, = 2.28, k= 1.3,

h = 49.0; I) adopted value of nx,

The experimental determination of the limiting expansion ratio was made on the basis of an analysis of
the axial with_drawal A of the central compression shock and the relative pressure at the stagnation point at
the barrier (P = Py P,, where Py is the pressure at the stagnation point and P, is the pressure of the adia-
batically stagnated stream in front of the central shock).

The tests were conducted on a gas-dynamic stand with an open working section (on jets of cold air) and in
a pressure chamber (on jets of CO, and Ar) and encompassed the following range of parameters: My = 1-4,
n = 2-5000, k = 1,3-1,56; in all the modes the barrier did not fall outside the limits of the first barrel of the
jet.

The analysis of the schlieren photographs on a discriminator in orderto determine the withdrawal A
was performed with an error of no more than 10%. The accuracy in the determination of the quantity P was
no worse than 4% on the gasdynamic stand and no worse than 20% in the pressure chamber. In the first case
the expansion ratio was varied by changing P, and in the second case by the increase in Pp owing to the filling
of the pressure chamber with P, = const.

A typical graph of the dependence of the withdrawal A=p/ r, on the expansion ratio n is presented in
Fig. 2a. It is seen that with an increase in n its effect on the withdrawal of the shock continuously decreases,
and at some value n = nx the withdrawal becomes almost constant.

The nature of the dependence of the relative pressure at the stagnation point of the barrier on the expan-
sion ratio is analogous to that of the function A(n) (Fig. 2b).

In the measurement of both the withdrawals and the relative pressures the value of the limiting expansion
ratio was determined as follows.

From the series of values of A (or P) obtained when clearly n > n, we calculated the coefficient in the
equation of the straight line A = const (P = const) by the method of least squares and the root-mean-square
deviation ¢ of the experimental points from this straight line. Then the array of points from which the ’
calculation was made was increased by joining to it the values taken at all the smaller expansion ratios, For
n > ns the root-mean-square deviation remains almost constant; for n < n, its increase begins. The value
of the expansion ratio beginning with which a regular increase in ¢ was determined was taken as ny.

The values of the limiting expansion ratio found from the withdrawal of the shock and from measure-
ments of the pressures at the center of the barrier are presented in Fig. 3a in the form of a function of the
dimensionless argument h/raM %. They are grouped along a straight line with a root-mean-square error of
0.014, and therefore the empirical equation for the determination of nx has the form

n, = (254 0.2)#, (1)

a
where h = b/r,.
Figure 3b illustrates the effect of the discharge parameters on ny.

By analogy with the limiting expansion ratio one can introduce the concept of the limiting distance hx
to the barrier; when it is exceeded the compressed layer of the jet begins to affect the flow in front of the
barrier. From (1) we get
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Fig. 3. Dependence of limiting expansion ratio on M,,
k, and the distance h = h/ry. The straight line cor-
responds to Eq. (1). The experimental points are ob-
tained with the following discharge parameters of the
jets: a) 1, 2, 3) k= 1.4, Ma =1, 2, 3 (air); 4, 5) M, =
2.34, 4.46, k=1.4; 6, 7) M, = 2.28, k= 1.3 (COy; b)
1, 2, 3) My =1, 2, 3; solid and dashed curves cor-
respond to k = 1.1 and 1.4.

x5 /dyMNkn
06

o R
9 e
92 —
i
92 g6 0 ﬁ/daMam

Fig. 4. Comparison of Eq. (3) of [2], ob-
tained with My = 1-3, n = 2-40, and k = 1.4,
with experimental data; curve: based on

Eq. (3); experimental points 1 and 2 cor-
respond to M, = 2.28, k= 1.3, andn = 4620
and 28.2,
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The empirical equations obtained make possible the accurate extrapolation of the results of the calcula-
tions and experiments to modes with parameters which differ from the initial parameters. For example, for
all expansion ratios n > nx the withdrawal of the shock from the barrier remains constant, and it can be deter-
mined on the basis of numerical calculations of the interaction of a jet with a barrier in a vacuum [1]. For
n < nx the position of the shock in the jet in front of the barrier can be determined from the following empirical
equation [2]:

Xs

h
¥ _ 0.745—0.83exp (1 —1.73 -—-—-——) 3
M,V kn (3)

d,M,Vkn
The results of an experimental determination of the position of the central shock in a jet interacting
with a barrier in a pressure chamber with n < nk are presented in Fig. 4. Although the discharge parameters

in this case differ sharply from those for which Eq. (3) was obtained, the results of the experiment agree with
the calculation from it with good accuracy.
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FLOW OF A STREAM OF UNEVENLY HEATED LIQUID
OVER A GAS BUBBLE AT LOW MARANGONI NUMBERS

Yu. K. Bratukhin UDC 532.529.6: 536.25

-The problem of the thermocapillary convection in an unevenly heated liquid near a gas bubble is
solved analytically. Estimates are given for the velocity of drift and the shape of the bubble and
the vortex boundary.

Let a gas bubble of radius a be placed in a liquid which fills the entire space. A constant temperature
gradient VT = A is maintained at infinity. The force of gravity is absent. Shear stresses producing thermo-
capillary convection in the liquid develop under these conditions owing to the temperature dependence of the
coefficient of surface tension « at the surface of the bubble. The bubble itself begins to move. Under steady
conditions the velocity u of this translational motion is constant and is determined in the course of the solu-
tion.

The problem can be formulated as a steady-state problem if one changes to a frame of reference con-
nected with the bubble. In such a system the velocity of oncoming flow of the liquid is equal to the drift velocity
of the bubble with the opposite sign.

In the report it is assumed that the gas in the bubble is thermally nonconducting and its viscosity is
vanishingly small. This allows us not to write the Navier—Stokes equation and the heat-conduction equation
for the gas. However, the pressure q in the bubble must be taken into account in writing the boundary condi-
tions.

The problem will be solved in dimensionless quantities. For this we take the following as the char-
acteristic dimensions: the radius « of the undisturbed bubble for the length |da/dTIAa/7 for the velocity, A
- for the temperature, and |dc/dTIA for the pressure. Then the steady distributions of velocities v, pressures
p, and temperatures T in the liquid are determined by the system of equations

MEyT)v=—7Tp+Av; Vv=0; MPu—+—vvT)=AT. (1)

Here all the quantities are dimensionless; M = ldo/dTI{Aa?/vy) and P = v/ are the Marangoni and Prandtl
numbers. The appearance of the drift velocity u in the heat-conduction equation is connected with the choice
of the reference point of the temperature. One can assume that the motion is already established by the
starting time. Then it is convenient to measure the temperature from the undisturbed temperature of that
point of space at which the bubble is found at the time under consideration upon its continued uniform motion.
The partial derivative with respect to time in the nonsteady equation of heat conduction also gives a term
proportional to u. The corresponding term of the Navier—Stokes equation vanishes in the chosen frame of
reference,

The boundary conditions at the surface of the bubble must be added to the system (1). We take the free
surface of the bubble as impermeable and thermally nonconducting, and therefore the normal components of the
velocity and heat flux and the normal and tangential components of the stresses vanish at the surface. We
write these conditions in a spherical coordinate system r, 8, ¢ with the polar axis parallel to the vector A,
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